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Abstract 

In this paper we proposed a framework: PRivacy-preserving EstiMation of Individual admiXture (PREMIX) using 

Intel software guard extensions (SGX). SGX is a suite of software and hardware architectures to enable efficient and 

secure computation over confidential data. PREMIX enables multiple sites to securely collaborate on estimating 

individual admixture within a secure enclave inside Intel SGX. We implemented a feature selection module to 

identify most discriminative Single Nucleotide Polymorphism (SNP) based on informativeness and an Expectation 

Maximization (EM)-based Maximum Likelihood estimator to identify the individual admixture. Experimental results 

based on both simulation and 1000 genome data demonstrated the efficiency and accuracy of the proposed 

framework. PREMIX ensures a high level of security as all operations on sensitive genomic data are conducted 

within a secure enclave using SGX. 

Introduction 

Identifying the demographic histories of patients is an important problem arising in biomedical research. For 

example, given the accurate ethnicity information, researchers can better understand whether certain populations are 

more susceptible to particular disease or most likely to benefit from certain therapeutic interventions1. 

Understanding the individual admixture from different ancestries is also important for researchers who conduct 

case-control association studies2. Electronic medical records (EMRs) can provide clinicians and biomedical 

researchers a new perspective in studying associations with the symptom or medication use. However, research 

studies based on the races/ethnicity from EMRs often faces problem with missing or inaccurate self-described 

information3. Hispanics, for example, represent an admixed group between Native American, Caucasian and African. 

In addition, African-Americans represent another large admixed group. Researchers have shown that the individuals 

within the Hispanics or African-Americans groups did not form a distinct subgroup, but clustered variously within 

the other groups4. As a result, the self-report ethnicity information in EMRs may not provide the most accurate 

characterization of patients.  

Genome-wide association studies (GWAS) provide a powerful tool for identifying genetic biomarkers which reflects 

an individual’s ethnicity by applying admixture models on allele frequencies of SNPs5,6. A basic assumption for 

ethnicity testing is that any current individual genome or population is a mixture of ancestries from past populations7. 

Population methods developed according to the amount of loci that can be traced back to a certain ancestry 

population is largely used. Companies such as 23andMe8 or Ancestry DNA9 have been the major autosomal DNA 

tests existed to reveal the ancestry of an individual. However, it is usually infeasible for researchers to scan for every 

patient’s ethnicity through these expensive tests. Rapid advances in sequencing technologies enable the meaningful 

use of human genomic data in a wide range of healthcare and biomedicine applications. Reuse existing genomic data 

of patients to identify patient ethnicity or improve the accuracy of self-report information can significantly improve 

the data quality in research study that requires population stratification.  

The research team of 23andMe published 22 population-specific common SNPs that can reflect demographic 

histories5. The study was done from the self-reporting, participant-driven data gathered on the Web, and associations 

were discovered for the hair color, eye color, and freckling (in the genes OCA2, HERC2, SLC45A2, SLC24A4, 

IRF4, TYR, TYRP1, ASIP, and MC1R)5. Similar researches with SNPs associations are done by Yaeger et al.10 and 

Kosoy et al.11, which found 107 and 128 SNP race/ethnicity-related biomarkers, respectively. For example, Yaeger 

et al.10 investigated with 50 African Americans and 40 Nigerians as their subjects. Ancestry informative markers 

(AIMs) used in their study were based on bi-allelic SNPs that were selected from the Affymetrix 100K SNP chip 

based on “informativeness”12 of ancestry’s genotype data. Informativeness12 between multiple population groups 
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was determined using mutual information. Furthermore, Kosoy et al.11 worked on providing continental ancestry 

and characterized a set of 128 AIMs. The markers were chosen for informativeness, genome-wide distribution, and 

genotype reproducibility from 825 individuals. There are several ancestry estimation software that quantify genetic 

variation of admixture between populations using high-throughput sequencing data, such as the models used in the 

programs STRUCTURE13, FRAPPE14, TESS15, and Admixture16.   

However, many existing studies on race/ethnicity identification are restricted by sample size or biased by sample 

selection. For example, the evaluations for Eriksson et al.17 were done only on the European population in America. 

Yaeger et al.10 specifically focused on African Americans born in the United States and in Africa. A total of 825 

individuals were examined by Kosoy et al.11 covering a wider range of individuals, but the sample size is still 

limited. Aggregating data from multiple sources could significantly improve the power of the study in race/ethnicity 

identification. However, direct sharing of labeled patients’ genetic information for data mining would violate the 

policies concerning patient privacy18. Besides the privacy concerns in data mining phase, the same issues are also 

associated with the testing phase, where a researcher needs to identify the ethnicity through individual’s genomic 

data, but without compromising the patient’s privacy. 

Regarding the privacy concern, human genomic data must be handled carefully to avoid disclosure of sensitive 

patient information to unauthorized parties. Previous studies19–23 have demonstrated several privacy risks regarding 

to human genomic data. For example, Homer et al.24 discovered that the presence of an individual in a case group 

can be reliably determined (known as a re-identification attack) from the allele frequencies using an individual’s 

DNA profile, which can be acquired, for example, from a single hair or a drop of blood. The biomedical community 

has recognized the importance of privacy and data protection for genomic projects25. Many privacy and security 

technologies, e.g., differential privacy (DP)26, homomorphic encryption (HME)27–30 and secure multiparty 

computation (SMC)31,32 have advanced in protecting biomedical data33–39. Among them, DP solutions will alter data 

to make it difficult to identify information to a particular individual, and DP might also render outputs useless25. 

HME and SMC (e.g. based on garbled circuits and secret sharing) hold the promise of secure general-purpose 

computing in the cloud but existing solutions are too computationally cumbersome to be used for complex big-data 

analysis. In addition, efficient SMC solutions 

exist (e.g. based on secret sharing and arithmetic 

circuit) but are domain-specific, thus 

inappropriate for exploratory analyses that need 

constant tuning. Distinct from some of the 

existed tools, our pipeline will not only allow 

users to perform ethnicity detection of a patient, 

but also provide secure protection of the subject’s 

information (Figure 1). We chose to use Intel® 

Software Guard Extensions (Intel® SGX)40, 

which is a set of new CPU instructions that can 

be used by applications to set aside private 

regions of code and data. Intel® SGX allows 

application to protect sensitive data from 

unauthorized access or modification and enables 

application to preserve the confidentiality without 

disrupting the software system. Both the labeled 

data and the unlabeled data from different 

sources will be protected during the process 

(Figure 1). Clients can only obtain the encrypted 

results (e.g., estimation of individual admixture) but cannot access the training data deposited by other institutions. 

Materials and Method 

In this paper, we will focus on the secure estimation of individual admixture using genomic data. We will first 

introduce the methods used for selecting AIMs and identifying individual admixture followed by the details about 

Intel® SGX frameworks. 

Selection of AIMs: The selection of the most discriminative AIMs can significantly improve the efficiency of 

prediction for identifying individual admixture10. In this paper, we compute and sort the mutual information12 

between multiple population groups to select the most discriminative bi-allelic SNPs (used as AIMs in this study). 

 

Figure 1. Workflow of the proposed PREMIX framework. 
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More specifically, the markers that are informative in one collection of source populations are generally informative 

in others10. Therefore, we apply statistical methods that use multilocus genotypes and population allele frequencies 

to represent the average frequency of allele at a certain locus, and assign informativeness to no-admixture model 

based on the conditional entropy of a random population given the knowledge of the genotype. Next, the 

informativeness is sorted from the largest to the smallest.  

Identifying individual admixture: Our pipeline determines an individual’s ethnicity based on the method developed 

by Tang et al.14. The Estimation Maximization (EM) algorithm proposed by this model demonstrates increased 

robustness and comparable efficiency when compared to existing maximum likelihood (ML) model14 and Bayesian 

MCMC method13. This estimation allows for uncertainty in ancestral allele frequencies, provides an advantage 

toward separating an admixture population at an individual level, which they referred to as “individual admixture” 

(IA), and could achieve extensive stimulations to produce point estimates14. The goal is to estimate IA for the 

admixed individuals, 𝑄𝑖  =  (𝑞𝑖1, … , 𝑞𝑖𝐾) and 𝑖 = 1, … 𝐼0, where Qi is the individual admixture fraction of the 𝑖-th 

individual; 𝐼0 is the total number of individuals to be identified; 𝐾 is the number of ancestries. The allele frequencies 

of different ancestral markers are denoted as P. A likelihood function given an unobservable variable 𝑍𝑖𝑚𝑎 ∈
{1, … , 𝐾} can be expressed as  

𝑙(𝐺, 𝑍|𝑃, 𝑄) = ∑ ∑ ∑ ∑ ∑ 𝟏(𝐺𝑖𝑚𝑎 = 𝑙, 𝑍𝑖𝑚𝑎 = 𝑘) log(𝑝𝑚𝑙𝑘𝑞𝑖𝑘)

𝐾

𝑘=1

𝐿𝑚

𝑙=1

2

𝑎=1

𝑀

𝑚=1

𝐼

𝑖=1

 

where 𝟏(⋅) is an indicator function; 𝑝𝑚𝑙𝑘 is the frequency of allele 𝑙 at marker 𝑚 for the 𝑘-th ancestry; 𝐺𝑖𝑚𝑎 is the 

allele for the 𝑖-th individual at the 𝑎-th allele of marker 𝑚. An EM algorithm can be implemented to efficiently 

estimate the parameters 𝑃 and Q. Convergence is declared when the difference in the estimates of 𝑄 and 𝑃 fall 

below a small threshold14.  

Secure computation methods: To mitigate the 

privacy risk while supporting scientific discovery, 

security researchers have developed many 

theoretical frameworks. However, even the best-

known methods based on HElib41 for homomorphic 

encryption or FlexSC42 for garbled circuit-based 

secure multiparty computation are not practical 

enough to handle large-scale genomic data analysis. 

These real challenges motivate the development of 

new solutions. Intel recently announced a new 

Software Guard eXtensions (SGX)40 architecture 

for their next generation CPUs, which shed light to 

novel solutions to above mentioned challenges 

using a hybrid software-hardware framework. 

Figure 2 shows some of the major conceptual 

functions of the SGX architecture (need to be 

developed on a case-by-case manner depending on 

the application). As a built-in feature in the Intel® Skylake family Central Processing Units (CPUs), SGX-enabled 

devices can be found in most recently released computing platforms (e.g., laptops, desktops and servers). Intel® 

SGX framework provides a cost-effective solution to achieve affordable secure computation in terms of both 

complexity and finance concerns. For example, a pioneer study of SGX-based MapReduce framework for 

distributed high-performance computations43 shows a negligible overhead of 8% to achieve read/write integrity 

using SGX. This is a significant advantage of using SGX in comparison to other secure computation scheme like 

homomorphic encryption or garbled circuits, which usually increase the complexity thousands of times over. 

Furthermore, an SGX-enabled machine only cost as low as a few hundred dollars. In SGX, a protected area in CPU, 

which is usually referred to as enclave, is dedicated to execute sensitive codes and compute sensitive data in a secure 

manner, where any interfere from software outside the enclave are prohibited by the SGX hardware. Therefore, both 

data confidentiality and integrity can be achieved with a proper systemic design of SGX applications. SGX is 

resilient to both software level attacks (e.g., malicious operating system, etc.) and hardware level attacks (e.g., for 

memory, hard disk, network etc.). Some preliminary studies43–45 have revealed the possibility of SGX to 

significantly enhance the security and privacy of many applications. However, most of them are based on simulation 

study and none of them has tackled genomic data security and privacy in a real SGX-enabled computing platform. 

Figure 2. Conceptual functions of the SGX architecture. 
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To ensure the security of the whole system, an SGX framework requires the adoption of industry-standard 

cryptographic primitives and systemic implementation of several key steps, as shown in Tables 1 and 2, respectively. 

Taking advantage of this novel architecture, we developed a PREMIX framework for privacy-preserving estimation 

of individual admixture in this paper. 

Table 1. Summary of cryptographic primitives to be adopted in the design of SGX application. 

Cryptographic primitives Description Security Industry standard 

Advanced Encryption 

Standard (AES) in Galois 

Counter Mode (GCM) 

Authenticated encryption, which provides 

simultaneous protection of data confidentiality 

and authenticity.  

128 bits 
NIST SP 800-38D 

guideline 46 

Elliptic Curve Diffie–Hellman 

(ECDH) 

A key agreement protocol based on Elliptic 

Curve Cryptography (ECC) to establish securely 

shared symmetric key for AES over on an 

insecure channel. 

256 bits 
NIST SP 800-56A 

guideline 47 

Elliptic Curve Digital 

Signature Algorithm 

(ECDSA) 

An ECC based digital signature scheme to ensure 

the source of data is as claimed. 
256 bits 

FIPS Pub. 186-3 

guideline48 

 

Table 2. Key steps and their corresponding cryptographic primitives for SGX application to achieve efficient and 

trustworthy computation. 

Key steps Description 
Cryptographic primitives 

AES-GCM ECDH ECDSA 

Remote 

attestation 

Securely provision an enclave from an authorized user who is 

outside the computing platform 
 X X 

Data 

provision 
Securely transfer sensitive data into enclave X X  

Results 

Study Subjects and Ancestral Population: We have used the phase 3 release (May 2013) of the 1000 Genomes 

project data to identify SNPs. Datasets from 1000 Genome project include genetic variation across diverse 

populations from Europe, Asia, Africa and the Americas. The present 1000 Genome data contain 2504 samples from 

26 populations which can be categorized into five super-populations: East Asian (EAS), South Asian (SAS), African 

(AFR), European (EUR), and American (AMR). The global allele frequencies for each super-populations were 

calculated by counting the AC (“Total number of alternate alleles in called genotypes”) and AN (“Total number of 

alleles in called genotypes”) for all the individuals from a particular super population and using that to calculate the 

allele frequencies. 

Experimental setup: We use both simulation and real data to test the performance of our algorithm. For simulation 

experiment, we follow the setup used by Tang et al.14. Assume there are two ancestral populations 𝑋 and 𝑌. The 

simulated data consist of 500 admixed individuals, and 250 individuals from each of two populations as the training 

data. Since there are two groups, the IA vector is a scalar, and we sample it from a mixture model of Gaussian and 

uniform distributions. We select the SNPs that the differences of its allele frequencies from two parties are bigger 

than a 𝛿-value 0.3. Conditioning on the SNPs and the IA vector, we can randomly generate the 1000 individuals for 

simulation. From 1000 genome data, we used two populations: ACB (African Caribbeans in Barbados) and TSI 

(Toscani in Italia), and each of them contains 96 and 107 subjects. We extracted the first 31,000 SNPs of their 22nd 

chromosomes. All of these SNPs will be processed by the informativeness algorithm12 to choose the top SNPs for 

computing the IA vector of the admixed individuals. 

We implemented the proposed PREMIX server and client on two machines: the server is an Intel® Xeon core E3-

1275 v5 with Intel® SGX support and 64 GB memory; the client machine is Intel® Core i7-6820HQ CPU and 48GB 

Memory. 

The experiments are designed to focus on the following three aspects: (a) computational complexity comparison 

between secure SGX-based C++ implementation vs insecure C++ implementation; (b) the simulation data results; (c) 

the real data results using different number of top informative AIMs. 
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Experimental results: Table 3 shows the key steps and total running times of PREMIX using secure SGX 

implementations with encrypted remote data and insecure C++ with local data. We tested four different data sizes, 

and all of the results in Table 3 are the averaging values over 10 trials. From the results, we can see that, there is no 

significant different between the two frameworks in implementing EM algorithm, but the total running times of 

secure SGX is a little slower than those of insecure C++. The additional overhead in the total running times of 

secure SGX is due to the data encryption, attestation, data transfer and analysis over encrypted data. 

Table 3. Comparison of the running times of computing PREMIX between secure SGX-based C++ implementation 

vs. insecure C++ implementation. Here 𝐼0 and 𝐼 are the number of admixed individuals and the total individuals, 

respectively. The unit of all running times is second. 

𝑰𝟎/𝑰 

Secure SGX-based C++ Insecure C++ 

Client data 

encryption 

Attestation Data 

transfer 

EM 

algorithm 

Total EM 

algorithm 

Total 

250/500 <0.001 0.563 0.453 1.827 3.788 2.186 3.296 

500/1000 0.006 0.567 0.766 3.613 6.631 4.042 5.847 

750/1500 0.008 0.579 1.040 6.937 10.987 6.873 9.422 

1000/2000 0.016 0.569 1.449 9.424 14.662 9.095 12.539 

 

Simulated data is used for evaluating the PREMIX framework. We suppose that the labeled data with ethnicity 

information are non-admixed and there are two populations. Each individual in the labeled data set is sampled from 

one of the two populations. The number of SNPs used in our simulation is 200. The iteration rounds of the EM 

algorithm are set to 200. 

Table 4 is the results of PREMIX using simulated data. Since we know the ground truth under simulation 

environment. We can compute the root mean square error (RMSE) and the bias. Table 4 shows that the RMSE will 

less than 0.1 with no more than 0.01 bias, if the 𝛿 value of two groups is bigger than 0.3. 

 
(a) Two populations                (b) Three populations 

Figure 3. Estimated individual admixture using the proposed PREMIX framework. 

For the real data, we split each population into two groups, where the first group is used as admixed individuals to 

be predicted and the second group is used as the labeled data. Specifically, the individuals from ACB and TSI 

0 10 20 30 40 50 60 70 80 90 100

Individuals

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
s
ti
m

a
te

d
 i
n
d

iv
id

u
a

l 
a

d
m

ix
tu

re

ACB TSI

0 50 100 150

Individuals

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
s
ti
m

a
te

d
 i
n
d

iv
id

u
a

l 
a

d
m

ix
tu

re

ACB CHS TSI

Table 4. Performance 

based on simulated 

data. 

𝜹 RMSE Bias 

0.3 0.117 0.015 

0.4 0.089 0.006 

0.5 0.080 0.010 

0.6 0.070 0.001 

 

Table 5. Percentage of correctly identified 

individuals using different number of AIMs. 

𝑀 Percentage of correct identification 

10 81 % 

20 93 % 

50 95 % 

100 95 % 

200 95 % 

500 97 % 

 

Table 6.  Percentage of correctly 

identified individuals using different 

labeled data sizes. 

Labeled 

data size 

Percentage of correct 

identification 

20 93% 

40 95% 

60 95% 

80 95% 

100 95% 
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populations were included in our experiment. For both populations, the first 50 individuals are viewed as admixed 

individual, and the rest individuals from both populations (i.e., 46 ACB individuals and 57 TSI individuals) are used 

as labeled data. In addition, we suppose these labeled data were from two sources to simulate a secure collaboration 

scenario. The SNPs were screened based on their informativeness12, where the top 𝑀 SNPs will be selected for the 

next step in PREMIX framework. For the real data, since there is no ground true of IA vector, the admixed 

individual will be classified to the population based on their maximum estimated IA component. Tables 5 and 6 

depict the percentage of correctly identified individuals using different number of AIMs and different labeled data 

sizes, respectively. In Table 5, we can see that the percentage of correct identification increases as the number of 

AIMs 𝑀 increases. Based on our experiments, a high percentage of correct identification can be achieved with 50 or 

more AIMs. Moreover, Table 6 shows the framework can achieve a relative accurate identification performance 

with as few as 40 labeled data. 

Figure 3 (a) shows the estimated IA vectors for two populations. The first 50 individuals are from the ACB 

population, and the second 50 individuals are from TSI population. We can see that the PREMIX can successfully 

identify the ethnicities of most individuals in both groups.  

To further evaluate the performance of the PREXIM, we included a third population CHS (Southern Han Chinese) 

in our experiment. In Figure 3 (b), the first 50 individuals are from the ACB; the second 50 individuals are from 

CHS; and the final 50 individuals are from TSI. We see that there is some performance degradation of the proposed 

PREXIM framework in identifying more than two populations. 

Discussion and Limitation  

The main contribution of this paper is to introduce a new hybrid solution (i.e., Intel® SGX) using both hardware and 

software to enable efficient and privacy-preserving estimation of individual admixture. The proposed PREMIX 

framework can protect the privacy of sensitive genomic data with ancestry information, as well as the privacy of the 

data users, who would like to identify their individual admixture. Due to the adoption of strong security protection 

primitives, multiple data owners can collaborate on the study to improve the estimation performance without 

sacrificing individual data privacy. In the proposed framework, we provided both a secure feature selection module 

based on informativeness of SNPs and a secure EM based maximum likelihood estimator to achieve both 

computational efficiency and estimation accuracy. Our experimental results demonstrated the advantage of secure 

collaboration in identifying individual admixture. 

There are several limitations in this study. First, even it can well protect the data privacy, the SGX hardware is 

vulnerable to Denial-of-service (DoS) attack; however, the data privacy will not be compromised under this attack. 

Second, proposed method was only evaluated through limited data sets (i.e., simulated data and 1000 genome data) 

in this pilot study. The use of Human Genome Diversity project (HGDP) could improve the impact of this study and 

provide better performance assessment. In addition, the proposed method relies on an EM-based maximum 

likelihood estimator, which can only support a small number of populations. Recently, many advanced ethnicity 

identification programs have been developed particularly for genome-wide SNP data. For example, TESS363 is an 

updated version of the spatial ancestry estimation program TESS, which combines matrix factorization and spatial 

statistical methods. TESS3 estimates ancestry coefficients with comparable accuracy and fast run-times, and can be 

used to perform genome scans for selection, separate adaptive from non-adaptive genetic variation using ancestral 

allele frequency differentiation tests. AncestryMapper50 assigns each individual analyzed with a genetic identifier, 

referred as Ancestry Mapper Id (AMid) which corresponds to its relationship to the HGDP reference population. 

TreeMix51 follows a tree-based approach with branches built by maximum likelihood lengths and migration weights. 

Population was identified by searching through the space of possible graphs with optimized the branch lengths and 

weights. FastSTRUCTURE52 is a recent modification of the popular model STRUCTURE which provides a faster 

approximate inference using a variational Bayesian framework and poses the problem of computing relevant 

posterior distributions as an optimization problem. The software identifies the number of populations represented in 

a dataset with heuristic and new hierarchical prior to detect weak population structure in the data. Among a large 

population, algorithm such as Eagle53 detects association analysis of rare variants from a large population cohorts 

based on genotyping arrays using long-range phasing (LRP) to rapidly phase segments of genome identical-by-

descent (IBD) with closely or distantly related individuals. Eagle runs two iterations of fast approximate Viterbi 

decoding using a simple diploid analog of the Li-Stephens HMM to allows phasing of segments lacking IBD to 

ensure accurate results. The development of trustworthy computation framework to support advanced methods in 

race/ethnicity identification warrants the further investigation along this line. Finally, the limited secure memory (~ 
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96 MB) in SGX restricts the algorithm to process a huge amount of data concurrently. In the next step, we will 

optimize the secure memory usage to improve the data processing capacity of the proposed method.  
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