PREMIX: Privacy-preserving EstiMation of individual admixture

Published in AMIA Annual Symposium Proceedings, 2017

## Abstract In this paper we proposed a framework: PRivacy-preserving EstiMation of Individual admiXture (PREMIX) using Intel software guard extensions (SGX). SGX is a suite of software and hardware architectures to enable efficient and secure computation over confidential data. PREMIX enables multiple sites to securely collaborate on estimating individual admixture within a secure enclave inside Intel SGX. We implemented a feature selection module to identify most discriminative Single Nucleotide Polymorphism (SNP) based on informativeness and an Expectation Maximization (EM)-based Maximum Likelihood estimator to identify the individual admixture. Experimental results based on both simulation and 1000 genome data demonstrated the efficiency and accuracy of the proposed framework. PREMIX ensures a high level of security as all operations on sensitive genomic data are conducted within a secure enclave using SGX. [Download paper here](http://michelled3.github.io/files/2017-02-10_PREMIX.pdf)